Соотношение байта и бита – Бит и байт (килобайт, мегабайт, гигабайт, терабайт) — единицы измерения информации | Создание сайтов и заработок в сети

Содержание

О битах, байтах и скорости интернет соединения

87045
08.08.2009

Поделиться

Класснуть

Поделиться

Твитнуть

Плюсануть


Для начала попробуем разобраться, что же такое биты и байты. Бит это самая наименьшая
единица измерения количества информации. Наравне с битом активно используется байт.
Байт равен 8 бит. Попробуем изобразить это наглядно на следующей диаграмме.


Думаю, с этим все понятно и не имеет смысла останавливаться подробнее.
Так как бит и байт это очень маленькие величины, то в основном они используются с приставками кило, мега и гига.
Наверняка вы слышали о них еще со школьной программы. Общепринятые единицы и их сокращения мы соединили
в таблицу.












НазваниеАббревиатура английскаяАббревиатура русскаяЗначение
битbit (b)б0 или 1
байтByte (B)Б8 бит
килобитkbit (kb)кбит (кб)1000 бит
килобайтKByte (KB)КБайт (KБ)1024 байта
мегабитmbit (mb)мбит (мб)1000 килобит
мегабайтMByte (MB)МБайт (МБ)1024 килобайта
гигабитgbit (gb)гбит (гб)1000 мегабит
гигабайтGByte (GB)ГБайт (ГБ)1024 мегабайта


Теперь попробуем определиться с величинами измерения скорости интернет соединения.


Говоря понятным языком, скорость подключения это количество получаемой или отправляемой
вашим компьютером информации в единицу времени. В качестве единицы времени в данном случае
принято считать секунду а в качестве количества информации кило или мегабит.


Таким образом, если ваша скорость 128 Kbps это означает, что ваше соединение
имеет пропускную способность 128 килобит в секунду или же 16 килобайт в секунду.


Много это или мало судить вам. Для того чтобы более материально почувствовать вашу скорость
рекомендую воспользоваться нашими тестами. Определить время, необходимое для закачки файла,
определенного вами размера, при вашей скорости подключения. Также вы можете посмотреть, файл какого
объема вы сможете скачать за определенный вами период времени при вашей скорости подключения.


Используя наши тесты необходимо помнить и учитывать, что наш сервер, на котором собственно и
расположены все эти тесты находится от вашего компьютера достаточно далеко и соответственно
на результатах может сказываться как загруженность нашего сервера (на нашем сайте в часы пик
одновременно производят замер скорости соединения более 1000 человек), так и загруженность интернет линий.


Если бы наш сервер стоял за одним столом с вашим компьютером и они были бы подключены друг к другу одним проводом,
тогда можно было бы вести речь о наиболее точных результатах. В нашем же случае, как показывает практика,
подключение вашего компьютера к нашему серверу для тестирования происходит в среднем через 10 других
серверов.

Поделиться

Класснуть

Поделиться

Твитнуть

Плюсануть

Please enable JavaScript to view the comments powered by Disqus.

2ip.ru

Разное

(ГОСТ) — ГОСТ 8.417-2002, (МЭК) — Международная электротехническая комиссия

Использование заглавной буквы «Б» для обозначения байта соответствует требованиям ГОСТ и позволяет избежать путаницы между сокращениями байт и бит

1 байт = 23 = 8 бит, 1024 байт = 8192 битам, 8 битные байты стали стандартом де-факто, с начала 70-х в большинстве компьютеров байты состоят из 8 бит, а размер машинного слова кратен 8 битам

МЭК рекомендует использовать двоичные приставки, но на практике они пока не применяются, возможно, из-за неблагозвучности — кибибайт, мебибайт, и т. п.

1 кбит = 103 бит = 1000 бит. Часто путают с килобайтом, равным 210 байтам = 1024 байтам = 8192 битам. Термин «килобит», как видно из формул выше, фактически определяет две разные величины. Это связано с тем, что в марте 1999 МЭК ввела новый стандарт по именованию двоичных чисел. Таким образом, размерность 1 килобита информации следует определять по контексту

Действующий ГОСТ указывает на такое определение килобайта как на некорректное, однако многие современные операционные системы продолжают придерживаться принципа, что 1 килобайт равен 1024 байт, в то время, как производители запоминающих устройств считают его равным 1000 байт. Термин килобайт применяется формально неверно, так как приставка кило-, традиционно означает умножение на 1000, а не 1024. Согласно предложению МЭК, формально правильной для 210 является двоичная приставка киби- (кибибайт)

1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт, 1 Тбайт = 1024 Гбайт








(ГОСТ) не соответствие(МЭК)(МЭК) байт
байтБ100байтBБ20
килобайтКБ1031000кибибайтKiBКиБ2101024
мегабайт МБ1061000000 мебибайт MiB МиБ 220 1048576
гигабайтГБ109гибибайтGiBГиБ230 1,099511628×1012
терабайтТБ 1012 тебибайтTiBТиБ2401,20892582×1024

По материалам Википедии

myhouselife.ru

Интернетско-русский разговорник

Вы читатель
данной страницы
Информацию, как и любую другую величину, можно (и нужно) измерять. Специально для этого была разработана особая система.
Минимальной единицой измерения информации принято считать 1 бит. 1 бит заключает в себе простейшую логическую информацию — «ложь» или «истина» («да» или «нет»), «1» или «0».
На понятии о битах построена двоичная система счисления. Особенность в том, что все числа и символы могут быть записаны посредством различных комбинации 1 или 0.
(более подробно См. курс Информатики и Высш. Математики).

Более удобная величина — 1 байт. 1 байт несёт в себе ровно 1 символ (буква, цифра, пробел и т. п.). Математически 1 байт равен 8 битам.
Как и в других измерительных системах есть производные от этих величин:

— с приставкой ~Кило (в 1024 раза больше)

— с приставкой ~Мега (в 1024 раза больше)

— с приставкой ~Гига (в 1024 раза больше)

— с приставкой ~Тера (в 1024 раза больше)
и т.д.
Часто пользователи путают эти приставки, с теми, что применяются в других измерительных системах и округляют 1024 до тысячи.

Математически это НЕВЕРНО!

Соответсвенно таблица производных выглядит так:

1 бит

1 килобит = 1024 бит

1 мегабит = 1024 килобит = 1024 * 1024 бит

1 гигабит = 1024 мегабит = 1024 * 1024 килобит = 1024 * 1024 * 1024 бит и т.д.

1 байт

1 Килобайт = 1024 байт

1 Мегабайт = 1024 Килобайт = 1024 * 1024 байт

1 Гигабайт = 1024 Мегабайт = 1024 * 1024 Килобайт = 1024 * 1024 * 1024 байт и т.д.

Обычно в повседневной жизни информация измеряется в байтах и производных от байта.
Это касается определение обьёма жёсткого диска (HDD) и других носителей (3″15 Флоппи-дискеты, CD),
обьёма звуковой памяти, видео или оперативной памяти компьютера и другого.

В 1 средней книге (1 том «Л. Н. Толстой. Вонйна и Мир») содержится, приблизительно, столько символов, сколько содержится в 1 Мегабайте информации.

Исторически сложилось, что скорость передачи данных в сети (локальной, глобальной сети Интернет и др.) измеряется в килобитах/секунду.
Показательным являет колличество бит, передаваемых по сети за 1 секунду.

Однако, пользователи сети зачастую путают биты и байты, забывая о об отношении 8:1

Таким образом краткая таблица соотношения бит и байт выглядит так:

1 бит

1 байт = 8 бит

1 Килобайт = 1024 байт = 1/8 килобит = 1/8 * 1024 бит.

1 Мегабайт = 1024 Килобайт = (1024 * 1024) байт = (1/8 * 1024) Килобит = (1/8 * 1024) * 1024 бит

и т.д.

1 килобит * 8 = 1 Килобайт

1 мегабит * 8 = 1 Мегабайт = 1024 Килобайт = 8 * 1024 килобит

и т. д.

Помните про отношение байта к биту, как 1:8 и про то, что следующее производное, больше предыдущего в 1024 раза (а не в 1000!)
и Ваши расчёты информации будут ВСЕГДА ВЕРНЫМИ.

(article by Shark, converter by Jungle)

termins.narod.ru

Справочник по программному обеспечению (ПО, software)

Сергей Бондаренко       
Главная страница »     

Единицы измерения информации:

Бит (bit) – базовая единица измерения информации, может содержать только одну двоичную цифру. Бит может принимать только два значения: «0» или «1».

Байт (byte) – также единица количества информации, один байт равен восьми битам (1 Байт = 8 бит).

Инфографика: в одном байте содержится восемь бит

Десятичные приставки

Используются при описании скорости передачи данных.

Приставка «кило» означает умножение на 1000 (103)

Приставка «мега» означает умножение на 1 000 000 (106)

Приставка «гига» означает умножение на 1 000 000 000 (109)

Приставка «тера» означает умножение на 1 000 000 000 000 (1012)

Двоичные приставки

Используются при описании количества хранимой информации.

Приставка «киби-» означает умножение на 1024 (210)

Приставка «меби-» означает умножение на 1 048 576 (220)

Приставка «гиби-» означает умножение на 1 073 741 824 (230)

Приставка «теби-» означает умножение на 1 099 511 627 776 (240)

Инфографика: кибибайт «тяжелее» килограмма

Двоичные приставки в ОС Windows и  у производителей ОЗУ

1 Кбайт (КБ или KB или Kbyte) = 1024 байт,

1 Мбайт (МБ или MB или Mbyte) = 1024 Кбайт = 1 048 576 байт,

1 Гбайт (ГБ или GB или Gbyte) = 1024 Мбайт = 1 048 576 Кбайт = 1 073 741 824 байт

1 Тбайт (ТБ или TB или Tbyte) = 1024 Гбайт = 1 048 576 Мбайт = 1 073 741 824 Кбайт = 1 099 511 627 776 байт

*В таблице большая буква «К» обозначает «кибибайты», а не «килобайты», а и т.д.

 

Подробнее о единицах хранения информации в IT-уроке 15.

Скорость передачи информации (данных)

Для измерения скорости передачи данных используют «биты в секунду» (bit per second), реже используют «байты в секунду» (byte per second).

Биты в секунду:

Маленькая буква «б» или латинская «b»

бит в секунду (бит/с, bps, bit/s или b/s)

1 килобит в секунду (Кбит/с, Кbps, kbit/s или Kb/s) = 1000 бит в секунду

1 мегабит в секунду (Мбит/с, Mbps, Mbit/s или Mb/s) = 1000 килобит в секунду

1 гигабит в секунду (Гбит/с, Gbps, Gbit/s или Gb/s) = 1000 мегабит в секунду

Байты в секунду:

Большая буква «Б» или латинская «B»

1 килобайт в секунду (КБайт/с или KB/s) = 1000 байт в секунду

1 мегабайт в секунду (МБайт/с или MB/s) = 1000 килобайт в секунду

1 гигабайт в секунду (ГБайт/с или GB/s) = 1000 мегабайт в секунду

Соотношения между «байт в секунду» и «бит в секунду»:

1 Байт в секунду = 8 бит в секунду

1 Килобайт в секунду = 8 000 бит в секунду = 8 килобит в секунду

1 Мегабайт в секунду = 8 000 000 бит в секунду = 8 мегабит в секунду

1 Гигабайт в секунду = 8 000 000 000 бит в секунду = 8 гигабит в секунду

Подробнее в IT-уроке 16


Поделитесь с друзьями:


it-uroki.ru

Разбираемся с прямым и обратным порядком байтов / Habr

Перевод статьи Халида Азада — Understanding Big and Little Endian Byte Order

Проблемы с порядком байтов очень расстраивают, и я хочу избавить Вас от горя, которое довелось испытать мне. Вот ключевые тезы:

  • Проблема: Компьютеры, как и люди, говорят на разных языках. Одни записывают данные “слева направо” другие “справа налево”. При этом каждое устройство отлично считывает собственные данные — проблемы начинаются, когда один компьютер сохраняет данные, а другой пытается эти данные считать.
  • Решение: Принять некий общий формат (например, весь сетевой трафик передается в едином формате). Или всегда добавлять заголовок, описывающий формат хранения данных. Если считанный заголовок имеет обратный порядок, значит данные сохранены в другом формате и должны быть переконвертированы.
Числа и данные

Наиболее важная концепция заключается в понимании разницы между числами и данными, которые эти числа представляют. Число — это абстрактное понятия, как исчислитель чего-то. У Вас есть десять пальцев. Понятие “десять” не меняется, в зависимости от использованного представления: десять, 10, diez (испанский), ju (японский), 1010 (бинарное представление), Х (римские числа)… Все эти представления указывают на понятие “десяти”.

Сравним это с данными. Данные — это физическое понятие, просто последовательность битов и байтов, хранящихся на компьютере. Данные не имеют неотъемлемого значения и должны быть интерпретированы тем, кто их считывает.

Данные — это как человеческое письмо, просто набор отметок на бумаге. Этим отметкам не присуще какое-либо значение. Если мы видим линию и круг (например, |O), то можно интерпретировать это как “десять”. Но это лишь предположение, что считанные символы представляют число. Это могут быть буквы “IO” — название спутника Юпитера. Или, возможно, имя греческой богини. Или аббревиатура для ввода/вывода. Или чьи-то инициалы. Или число 2 в бинарном представлении (“10”). Этот список предположений можно продолжить. Дело в том, что один фрагмент данных (|O) может быть интерпретировано по разному, и смысл остается не ясен, пока кто-то не уточнит намерения автора.

Компьютеры сталкиваются с такой же проблемой. Они хранят данные, а не абстрактные понятия, используя при этом 1 и 0. Позднее они считывают эти 1 и 0 и пытаются воссоздать абстрактные понятия из набора данных. В зависимости от сделанных допущений, эти 1 и 0 могут иметь абсолютно разное значение.

Почему так происходит? Ну, вообще-то нет такого правила, что компьютеры должны использовать один и тот же язык, так же, как нет такого правила и для людей. Каждый компьютер одного типа имеет внутреннюю совместимость (он может считывать свои собственные данные), но нет никакой гарантии, как именно интерпретирует эти данные компьютер другого типа.

Основные концепции:

  • Данные (биты и байты или отметки на бумаге) сами по себе не имеют смысла. Они должны быть интерпретированы в какое-то абстрактное понятие, например, число.
  • Как и люди, компьютеры имеют различные способы хранения одного и того же абстрактного понятия (например, мы можем различными способами сказать “10”).

Храним числа как данные

К счастью, большинство компьютеров хранят данные всего в нескольких форматах (хотя так было не всегда). Это дает нам общую отправную точку, что делает жизнь немного проще:

  • Бит имеет два состояния (включен или выключен, 1 или 0).
  • Байт — это последовательность из 8 бит. Крайний левый бит в байте является старшим. То есть двоичная последовательность 00001001 является десятичным числом девять. 00001001 = (2^3 + 2^0 = 8 + 1 = 9).
  • Биты нумеруются справа налево. Бит 0 является крайним правым и он наименьший. Бит 7 является крайним левым и он наибольший.

Мы можем использовать эти соглашения в качестве строительного блока для обмена данными. Если мы сохраняем и читаем данные по одному байту за раз, то этот подход будет работать на любом компьютере. Концепция байта одинаковая на всех машинах, понятие “байт 0” одинакова на всех машинах. Компьютеры также отлично понимают порядок, в котором Вы посылаете им байты — они понимают какой байт был прислан первым, вторым, третьим и т. д. “Байт 35” будет одним и тем же на всех машинах.

Так в чем же проблема — компьютеры отлично ладят с одиночными байтами, правда? Ну, все превосходно для однобайтных данных, таких как ASCII-символы. Однако, много данных используют для хранения несколько байтов, например, целые числа или числа с плавающей точкой. И нет никакого соглашения о том, в каком порядке должны хранится эти последовательности.

Пример с байтом

Рассмотрим последовательность из 4 байт. Назовем их W X Y и Z. Я избегаю наименований A B C D, потому что это шестнадцатеричные числа, что может немного запутывать. Итак, каждый байт имеет значение и состоит из 8 бит.

Имя байта            W         X          Y          Z
Позиция              0         1          2          3
Значение (hex)      0x12      0x34       0x56       0x78

Например, W — это один байт со значением 0х12 в шестнадцатеричном виде или 00010010 в бинарном. Если W будет интерпретироваться как число, то это будет “18” в десятеричной системе (между прочим, ничто не указывает на то, что мы должны интерпретировать этот байт как число — это может быть ASCII-символ или что-то совсем иное). Вы все еще со мной? Мы имеем 4 байта, W X Y и Z, каждый с различным значением.

Понимаем указатели

Указатели являются ключевой частью программирования, особенно в языке С. Указатель представляет собой число, являющееся адресом в памяти. И это зависит только от нас (программистов), как интерпретировать данные по этому адресу.

В языке С, когда вы кастите (приводите) указатель к конкретному типу (такому как char * или int *), это говорит компьютеру, как именно интерпретировать данные по этому адресу. Например, давайте объявим:

void *p = 0;   // p указатель на неизвестный тип данных
	           // p нулевой указатель - не разыменовывать
char *c;       // c указатель на один байт

Обратите внимание, что мы не можем получить из р данные, потому что мы не знаем их тип. р может указывать на цифру, букву, начало строки, Ваш гороскоп или изображение — мы просто не знаем, сколько байт нам нужно считать и как их интерпретировать.

Теперь предположим, что мы напишем:

c = (char *)p;

Этот оператор говорит компьютеру, что р указывает на то же место, и данные по этому адресу нужно интерпретировать как один символ (1 байт). В этом случае, с будет указывать на память по адресу 0, или на байт W. Если мы выведем с, то получим значение, хранящееся в W, которое равно шестнадцатеричному 0x12 (помните, что W — это полный байт). Этот пример не зависит от типа компьютера — опять же, все компьютеры одинаково хорошо понимают, что же такое один байт (в прошлом это было не всегда так).

Этот пример полезен, он одинаково работает на все компьютерах — если у нас есть указатель на байт (char *, один байт), мы можем проходить по памяти, считывая по одному байту за раз. Мы можем обратиться к любому месту в памяти, и порядок хранения байт не будет иметь никакого значения — любой компьютер вернет нам одинаковую информацию.

Так в чем же проблема?

Проблемы начинаются, когда компьютер пытается считать несколько байт. Многие типы данных состоят больше чем из одного байта, например, длинные целые (long integers) или числа с плавающей точкой. Байт имеет только 256 значений и может хранить числа от 0 до 255.

Теперь начинаются проблемы — если Вы читаете многобайтные данные, то где находится старший байт?

  • Машины с порядком хранения от старшего к младшему (прямой порядок) хранят старший байт первым. Если посмотреть на набор байтов, то первый байт (младший адрес) считается старшим.
  • Машины с порядком хранения от младшего к старшему (обратный порядок) хранят младший байт первым. Если посмотреть на набор байт, то первый байт будет наименьшим.

Такое именование имеет смысл, правда? Тип хранения от старшего к младшему подразумевает, что запись начинается со старшего и заканчивается младшим (Между прочим, английский вариант названий от старшего к младшего (Big-endian) и от младшего к старшему (Little-endian) взяты из книги “Путешествия Гулливера”, где лилипуты спорили о том, следует ли разбивать яйцо на маленьком конце (little-end) или на большом (big-end)). Иногда дебаты компьютеров такие же осмысленные 🙂

Повторюсь, порядок следования байтов не имеет значения пока Вы работаете с одним байтом. Если у Вас есть один байт, то это просто данные, которые Вы считываете и есть только один вариант их интерпретации (опять таки, потому что между компьютерами согласовано понятие одного байта).

Теперь предположим, что у нас есть 4 байта (WXYZ), которые хранятся одинаково на машинах с обоими типами порядка записи байтов. То есть, ячейка памяти 0 соответствует W, ячейка 1 соответствует X и т. д.

Мы можем создать такое соглашение, помня, что понятие “байт” является машинно-независимым. Мы можем обойти память по одному байту за раз и установить необходимые значения. Это будет работать на любой машине.

c = 0;     // указывает на позицию 0 (не будет работать на реальной машине!)
*c = 0x12; // устанавливаем значение W
c = 1;     // указывает на позицию 1
*c = 0x34; // устанавливаем значение X
...        // то же повторяем для Y и Z

Такой код будет работать на любой машине и успешно установит значение байт W, X, Y и Z расположенных на соответствующих позициях 0, 1, 2 и 3.

Интерпретация данных

Теперь давайте рассмотрим пример с многобайтными данными (наконец-то!). Короткая сводка: “short int” это 2-х байтовое число (16 бит), которое может иметь значение от 0 до 65535 (если оно беззнаковое). Давайте используем его в примере.

short *s; // указатель на short int (2 байта)
s = 0;    // указатель на позицию 0; *s это значение

Итак, s это указатель на short int, и сейчас он указывает на позицию 0 (в которой хранится W). Что произойдет, когда мы считаем значение по указателю s?

  • Машина с прямым порядком хранения: Я думаю, short int состоит из двух байт, а значит я считаю их. Позиция s это адрес 0 (W или 0х12), а позиция s + 1 это адрес 1 (X или 0х34). Поскольку первый байт является старшим, то число должно быть следующим 256 * байт 0 + байт 1 или 256 * W + X, или же 0х1234. Я умножаю первый байт на 256 (2^8) потому что его нужно сдвинуть на 8 бит.
  • Машина с обратным порядком хранения: Я не знаю что курит мистер “От старшего к младшему”. Я соглашусь, что short int состоит из 2 байт и я считаю их точно также: позиция s со значение 0х12 и позиция s + 1 со значением 0х34. Но в моем мире первым является младший байт! И число должно быть байт 0 + 256 * байт 1 или 256 * X + W, или 0х3412.

Обратите внимание, что обе машины начинали с позиции s и читали память последовательно. Не никакой путаницы в том, что значит позиция 0 и позиция 1. Как и нет никакой путаницы в том, что являет собой тип short int.

Теперь Вы видите проблему? Машина с порядком хранения от старшего к младшему считает, что s = 0x1234, в то время как машина с порядком хранения от младшего к старшему думает, что s = 0x3412. Абсолютно одинаковые данные дают в результате два совершенно разных числа.

И еще один пример

Давайте для “веселья” рассмотрим еще один пример с 4 байтовым целым:

int *i; // указатель на int (4 байты 32-битовой машине)
i = 0;  // указывает на позицию 0, а *i значение по этому адресу

И опять мы задаемся вопросом: какое значение хранится по адресу i?

  • Машина с прямым порядком хранения: тип int состоит из 4 байт и первый байт является старшим. Считываю 4 байта (WXYZ) из которых старший W. Полученное число: 0х12345678.
  • Машина с обратным порядком хранения: несомненно, int состоит из 4 байт, но старшим является последний. Так же считываю 4 байта (WXYZ), но W будет расположен в конце — так как он является младшим. Полученное число: 0х78563412.

Одинаковые данные, но разный результат — это не очень приятная вещь.

Проблема NUXI

Проблему с порядком байт иногда называют проблемой NUXI: слово UNIX, сохраненное на машинах с порядком хранения от старшего к младшему, будет отображаться как NUXI на машинах с порядком от младшего к старшему.

Допустим, что мы собираемся сохранить 4 байта (U, N, I, и X), как два short int: UN и IX. Каждая буква занимает целый байт, как в случае с WXYZ. Для сохранения двух значений типа short int напишем следующий код:

short *s; // указатель для установки значения переменной типа short
s = 0;    // указатель на позицию 0
*s = UN;  // устанавливаем первое значение: U * 256 + N (вымышленный код)
s = 2;    // указатель на следующую позицию
*s = IX;  // устанавливаем второе значение: I * 256 + X

Этот код не является специфичным для какой-то машины. Если мы сохраним значение “UN” на любой машине и считаем его обратно, то обратно получим тоже “UN”. Вопрос порядка следования байт не будет нас волновать, если мы сохраняем значение на одной машине, то должны получить это же значение при считывании.

Однако, если пройтись по памяти по одному байту за раз (используя трюк с char *), то порядок байт может различаться. На машине с прямым порядком хранения мы увидим:

Byte:     U N I X
Location: 0 1 2 3

Что имеет смысл. “U” является старшим байтом в “UN” и соответственно хранится первым. Такая же ситуация для “IX”, где “I” — это старший байт и хранится он первым.

На машине с обратным порядком хранения мы скорее всего увидим:

Byte:     N U X I
Location: 0 1 2 3

Но и это тоже имеет смысл. “N” является младшим байтом в “UN” и значит хранится он первым. Опять же, хотя байты хранятся в “обратном порядке” в памяти, машины с порядком хранения от младшего к старшему знают что это обратный порядок байт, и интерпретирует их правильно при чтении. Также, обратите внимание, что мы можем определять шестнадцатеричные числа, такие как 0x1234, на любой машине. Машина с обратным порядком хранения байтов знает, что Вы имеете в виду, когда пишите 0x1234 и не заставит Вас менять значения местами (когда шестнадцатеричное число отправляется на запись, машина понимает что к чему и меняет байты в памяти местами, скрывая это от глаз. Вот такой трюк.).

Рассмотренный нами сценарий называется проблемой “NUXI”, потому что последовательность “UNIX” интерпретируется как “NUXI” на машинах с различным порядком хранения байтов. Опять же, эта проблема возникает только при обмене данными — каждая машина имеет внутреннюю совместимость.

Обмен данными между машинами с различным порядком хранения байтов

Сейчас компьютеры соединены — прошли те времена, когда машинам приходилось беспокоиться только о чтении своих собственных данных. Машинам с различным порядком хранения байтов нужно как-то обмениваться данными и понимать друг друга. Как же они это делают?

Решение 1: Использовать общий формат

Самый простой подход состоит в согласовании с общим форматом для передачи данных по сети. Стандартным сетевым является порядок от старшего к младшему, но некоторые люди могут расстроиться, что не победил порядок от младшего к старшему, поэтому просто назовем его “сетевой порядок”.

Для конвертирования данных в соответствии с сетевым порядком хранения байтов, машины вызывают функцию hton() (host-to-network). На машинах с прямым порядком хранения эта функция не делает ничего, но мы не будем говорить здесь об этом (это может разозлить машины с обратным порядком хранения 🙂 ).

Но важно использовать функцию hton() перед отсылкой данных даже если Вы работаете на машине с порядком хранения от старшего к младшему. Ваша программа может стать весьма популярной и будет скомпилирована на различных машинах, а Вы ведь стремитесь к переносимости своего кода (разве не так?).

Точно также существует функция ntoh() (network-to-host), которая используется для чтения данных из сети. Вы должны использовать ее, чтобы быть уверенными, что правильно интерпретируете сетевые данные в формат хоста. Вы должны знать тип данных, которые принимаете, чтобы расшифровать их правильно. Функции преобразования имеют следующий вид:

htons() - "Host to Network Short"
htonl() - "Host to Network Long"
ntohs() - "Network to Host Short"
ntohl() - "Network to Host Long"

Помните, что один байт — это один байт и порядок не имеет значения.

Эти функции имеют критическое значение при выполнении низкоуровневых сетевых операций, таких как проверка контрольной суммы IP-пакетов. Если Вы не понимаете сути проблемы с порядком хранения байтов, то Ваша жизнь будет наполнена болью — поверьте мне на слово. Используйте функции преобразования и знайте, зачем они нужны.

Решение 2: Использования маркера последовательности байтов (Byte Order Mark — BOM)

Этот подход подразумевает использование некого магического числа, например 0xFEFF, перед каждым куском данных. Если Вы считали магическое число и его значение 0xFEFF, значит данные в том же формате, что и у Вашей машины и все хорошо. Если Вы считали магическое число и его значение 0xFFFE, это значит, что данные были записаны в формате, отличающемся от формата вашей машины и Вы должны будете преобразовать их.

Нужно отметить несколько пунктов. Во-первых, число не совсем магическое, как известно программисты часто используют этот термин для описания произвольно выбранных чисел (BOM может быть любой последовательностью различных байтов). Такая пометка называется маркером последовательности байтов потому что показывает в каком порядке данные были сохранены.

Во-вторых, BOM добавляет накладные расходы для всех передаваемых данных. Даже в случае передачи 2 байт информации Вы должны добавлять к ним 2 байта маркера BOM. Пугающе, не так ли?

Unicode использует BOM, когда сохраняет многобайтные данные (некоторые кодировки Unicode могут иметь по 2, 3 и даже 4 байта на символ). XML позволяет избежать этой путаницы, сохраняя данные сразу в UTF-8 по умолчанию, который сохраняет информацию Unicode по одному байту за раз. Почему это так круто?

Повторяю в 56-й раз — потому что проблема порядка хранения не имеет значения для единичных байт.

Опять же, в случае использования BOM может возникнуть другие проблемы. Что, если Вы забудете добавить BOM? Будете предполагать, что данные были отправлены в том же формате, что и Ваши? Прочитаете данные и, увидев что они “перевернуты” (что бы это не значило), попытаетесь преобразовать их? Что, если правильные данные случайно будут содержать неправильный BOM? Эти ситуации не очень приятные.

Почему вообще существует эта проблема? Нельзя ли просто договориться?

Ох, какой же это философский вопрос. Каждый порядок хранения байтов имеет свои преимущества. Машины с порядком следования от младшего к старшему позволяют читать младший байт первым, не считывая при этом остальные. Таким образом можно легко проверить является число нечетным или четным (последний бит 0), что очень здорово, если Вам необходима такая проверка. Машины с порядком от старшего к младшему хранят данные в памяти в привычном для человека виде (слева направо), что упрощает низкоуровневую отладку.

Так почему же все просто не договорятся об использовании одной из систем? Почему одни компьютеры пытаются быть отличными от других? Позвольте мне ответить вопросом на вопрос: почему не все люди говорят на одном языке? Почему в некоторых языках письменность слева направо, а у других справа налево?

Иногда системы развиваются независимо, а в последствии нуждаются во взаимодействии.

Эпилог: Мысли на прощание

Вопросы с порядком хранения байтов являются примером общей проблемы кодирования — данные должны представлять собой абстрактные понятия, и позднее это понятие должно быть создано из данных. Эта тема заслуживает отдельной статьи (или серии статей), но Вы должны иметь лучшее понимание проблемы, связанной с порядком хранения байтов.

habr.com

сколько битов в байте и другие переводы

Приветствую всех читателей моего блога. Каждый ли из вас знает, в каких единицах измеряется информация? Многие из вас, всего скорее, уже знакомы с такими понятиями, как бит и байт. По крайней мере, вы слышали о них. Каждый из пользователей также постоянно сталкивается с такими единицами измерения информации, как мегабайты, гигабайты и терабайты. Несмотря на их известность, не все из вас четко понимают, как сделать перевод одной величины в другую.

В процессе пересчета имеются свои нюансы. Именно из-за них у пользователей возникают трудности. Проблема заключается в том, что в основном люди используют десятичную систему счисления, к которой уже давно все привыкли. Например, если у единицы измерения присутствует приставка «кило», тогда величину нужно просто умножить на одну тысячу. Однако информация, которая передается или хранится в цифровом виде, измеряется с помощью величин двоичной системы. В связи с этим, чтобы узнать, сколько КБ в МБ, недостаточно выполнить простое умножение на 1000. С этой особенностью необходимо разобраться более подробно, что и будет сделано дальше в статье.

Что представляет собой бит/байт?

Сегодня компьютерами уже невозможно никого удивить. В такой технике применяются единицы измерения информации, которые будут описаны ниже. Они используются для обозначения объема как винчестера (HDD и SSD), так и оперативной памяти (ОЗУ).

Бит — это минимальная единица. Она обозначается маленькой буквой «б». Следом за ней идет байт. Он уже обозначается большой буквой «Б». В компьютерной терминологии в качестве единицы измерения информации биты используются гораздо реже по сравнению с байтами, после которых расположились производные от этой величины. Это килобайты (КБ), мегабайты (МБ), гигабайты (ГБ) и так далее. Всем известные приставки у слова «байт» не позволяют выполнить легкий перевод величины, умножив значение на 10 в соответствующей степени. Такое правило для пересчета единиц измерения информации не действует. По какой причине его нельзя применить для данного перевода будет рассказано далее.

Похожие величины также применяются, когда осуществляется измерение скорости передаваемой информации. Сегодня для этих целей чаще всего используют интернет. Передаваемая информация через такой канал измеряется в килобитах, мегабитах и так далее. В связи с тем, что с помощью этих величин обозначается скорость, то происходит подсчет именно бит в секунду. Другими словами, сколько их передается за единицу времени. Поэтому у каждого пользователя возникает вопрос относительно числа бит, содержащихся в 1 байте, а так же, как правильно пересчитать КБ в Кб.

Компьютерная техника применяет для функционирования исключительно значения двоичной системы. Если изъясняться по-другому, тогда можно сказать, что цифровые устройства работают только с циф

copirayter.ru

byte %%

Сколько байт в 1 мегабайте

ЕдиницаАббревиатураСколько
битб0 или 1бит
байтБ8 бит
килобиткбит (кб)1 000 бит
килобайтКБайт (KБ)1024 байта
мегабитмбит (мб)1 000 килобит
мегабайтМБайт (МБ)1024 килобайта
гигабитгбит (гб)1 000 мегабит
гигабайтГБайт (ГБ)1024 мегабайта
терабиттбит (тб)1 000 гигабит
терабайтТБайт (ТБ)1024 гигабайта

Байт (byte) — единица хранения и обработки цифровой информации. Чаще всего байт считается равным восьми битам, в этом случае он может принимать одно из 256 (2’8) различных значений. Для того, чтобы подчеркнуть, что имеется в виду восьмибитный байт, в описании сетевых протоколов используется термин «октет» (лат. octet).

Килобайт (кБ, Кбайт, КБ) м., скл. — единица измерения количества информации, равная в зависимости от контекста 1000 или 1024 (2’10) стандартным (8-битным) байтам. Применяется для указания объёма памяти в различных электронных устройствах.
1 килобайт (КБ) = 8 килобит (Кб)

Мегабайт (Мбайт, М, МБ) м., скл. — единица измерения количества информации, равная, в зависимости от контекста, 1 000 000 (10’6) или 1 048 576 (2’20) стандартным (8-битным) байтам.

Гигабайт (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 2’30 стандартным (8-битным) байтам или 1024 мегабайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Терабайт (Тбайт, ТБ) м., скл. — единица измерения количества информации, равная 1 099 511 627 776 (2’40) стандартным (8-битным) байтам или 1024 гигабайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Петабайт (ПБайт, ПБ) м., скл. — единица измерения количества информации, равная 25’0 стандартным (8-битным) байтам или 1024 терабайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Эксабайт (Эбайт, Э, ЭБ) — единица измерения количества информации, равная 26’0 стандартным (8-битным) байтам или 1024 петабайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Зеттабайт (Збайт, З, ЗБ) — единица измерения количества информации, равная 27’0 стандартным (8-битным) байтам или 1024 эксабайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Йоттабайт (Йбайт, Й, ЙБ) — единица измерения количества информации, равная 1024 стандартным (8-битным) байтам или 1000 зеттабайтам. Применяется для указания объёма памяти в различных электронных устройствах.

1 Йoттабайт можно представить как:

103 = 1 000 Зеттабайтов

106 = 1 000 000 Эксабайтов

109 = 1 000 000 000 Петабайтов

1012 = 1 000 000 000 000 Терабайтов

1015 = 1 000 000 000 000 000 Гигабайтов

1018 = 1 000 000 000 000 000 000 Мегабайтов

1021 = 1 000 000 000 000 000 000 000 Килобайтов

1024 = 1 000 000 000 000 000 000 000 000 Байтов

Конвертор величин байт, бит, килобит, килобайт, мегабит, мегабайт, гигабит, гигабайт, терабит, терабайт, петабит, петабайт, эксбит, эксбайт

7,2 терабайта на один размером с обычный DVD диск

Австралийские исследователи создали технологию, которая теоретически позволяет записывать 7,2 терабайта данных на один диск размером с обычный DVD. Об этом сообщает Nature News, а статья исследователей появилась в журнале Nature.

В современных DVD-приводах запись информации осуществляется при помощи лазерного луча, который выжигает на поверхности диска выемки. Новая технология работает похожим образом. Основное отличие в том, что вместо появления выемок на поверхности диска плавятся золотые наноштыри.

Столь высокой плотности записи информации ученым удалось добиться при помощи нескольких технических приемов. Во-первых, исследователи использовали лазеры нескольких цветов. Дело в том, что лучи определенной длины волны воздействуют только на штыри с определенным соотношением длины и толщины. Во-вторых, исследователи использовали лучи с различной поляризацией, которые действуют на штыри, ориентированные определенным образом.

Используя лучи разного цвета и разной поляризации, представляется возможным записывать информацию на одном и том же регионе диска несколько раз. Так, например, два вида поляризации и три цвета (то есть в общей сложности шесть возможных комбинаций) позволяют записать 1,6 терабайта данных на диск размером с DVD. Если добавить еще один вариант поляризации, то получится диск объемом 7,2 терабайта.

Чтобы считывать информацию, исследователи используют слабый луч лазера, который не расплавляет наноштыри. При этом на выходе получается читаемый сигнал: эмпирически установлено, что наноштыри «откликаются» на слабый лазер гораздо лучше, чем, например, сферические наночастицы, в которые штыри превращаются после расплава.

Слабой стороной новой технологии является то, что исследователи используют лазерные импульсы очень короткой длительности — порядка нескольких фемтосекунд. Подобные лазеры дороги и сложны в производстве. Ученые надеются, что дальнейшее развитие технологии позволит обойти это ограничение. Они рассчитывают, что промышленное использование их открытия начнется примерно в 2020-х годах.        ♌

Ловим Золотую рыбку в Интернете

fatpurse.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о